WIP: Move old geometry solver to include/geo

This commit is contained in:
David Allemang
2022-02-25 18:07:31 -05:00
parent 2d2feb3256
commit 0b03dc67fb
5 changed files with 5 additions and 5 deletions

30
include/geo/combo.hpp Normal file
View File

@@ -0,0 +1,30 @@
#pragma once
#include <set>
#include <algorithm>
template<typename V, typename M>
V select(const V &data, const M &mask, size_t count) {
V result;
result.reserve(count);
for (int i = 0; i < mask.size(); ++i) {
if (mask[i]) result.push_back(data[i]);
}
return result;
}
template<typename V>
std::vector<V> combinations(const V &data, const size_t count) {
std::vector<V> result;
std::vector<bool> mask(data.size(), false);
std::fill(mask.begin(), mask.begin() + count, true);
do {
result.push_back(select(data, mask, count));
} while (std::next_permutation(mask.begin(), mask.end(), std::greater<>()));
return result;
}

63
include/geo/geometry.hpp Normal file
View File

@@ -0,0 +1,63 @@
#pragma once
#include <tc/core.hpp>
#include <cmath>
#include <optional>
#include <numeric>
#include <iostream>
#include <Eigen/Eigen>
#include "combo.hpp"
template<unsigned N>
using Prims = Eigen::Matrix<unsigned, N, Eigen::Dynamic>;
template<int N>
using vec = Eigen::Matrix<float, N, 1>;
template<int N>
using mat = Eigen::Matrix<float, N, N>;
using vec1 = vec<1>;
using vec2 = vec<2>;
using vec3 = vec<3>;
using vec4 = vec<4>;
using vec5 = vec<5>;
using mat1 = mat<1>;
using mat2 = mat<2>;
using mat3 = mat<3>;
using mat4 = mat<4>;
using mat5 = mat<5>;
mat4 orthographic(float left, float right, float bottom, float top, float front, float back) {
mat4 res = mat4();
res <<
2 / (right - left), 0, 0, -(right + left) / (right - left),
0, 2 / (top - bottom), 0, -(top + bottom) / (top - bottom),
0, 0, 2 / (front - back), -(front + back) / (front - back),
0, 0, 0, 1;
return res;
}
mat4 perspective(float fovy, float aspect, float zNear, float zFar) {
float tanHalfFovy(std::tan(fovy / 2));
mat4 res = mat4::Identity();
res(0, 0) = 1 / (aspect * tanHalfFovy);
res(1, 1) = 1 / (tanHalfFovy);
res(2, 2) = -(zFar + zNear) / (zFar - zNear);
res(3, 2) = -1;
res(2, 3) = -(2 + zFar * zNear) / (zFar - zNear);
return res;
}
mat4 translation(float x, float y, float z) {
mat4 res = mat4();
res <<
1, 0, 0, x,
0, 1, 0, y,
0, 0, 1, z,
0, 0, 0, 1;
return res;
}

128
include/geo/mirror.hpp Normal file
View File

@@ -0,0 +1,128 @@
#pragma once
#include <tc/core.hpp>
#include <cmath>
#include <vector>
#include <algorithm>
#include <geo/geometry.hpp>
template<class V>
float dot(int n, const V &a, const V &b) {
float sum = 0;
for (int i = 0; i < n; ++i) {
sum += a[i] * b[i];
}
return sum;
}
template<unsigned N>
std::vector<vec<N>> mirror(const tc::Group &group) {
std::vector<std::vector<float>> mirrors;
for (int p = 0; p < group.ngens; ++p) {
std::vector<float> vp;
for (int m = 0; m < p; ++m) {
auto &vq = mirrors[m];
vp.push_back((cos(M_PI / group.get(p, m)) - dot(m, vp, vq)) / vq[m]);
}
vp.push_back(std::sqrt(1 - dot(p, vp, vp)));
for (const auto &v : mirrors) {
if (dot(p, vp, vp) > 0) {
for (auto &e : vp) {
e *= -1;
}
break;
}
}
mirrors.push_back(vp);
}
std::vector<vec<N>> res;
for (const auto &v : mirrors) {
vec<N> rv = vec<N>::Zero();
// ortho proj
for (int i = 0; i < std::min(v.size(), (size_t) N); ++i) {
rv[i] = v[i];
}
res.push_back(rv);
}
return res;
}
template<unsigned N>
vec<N> stereo(const vec<N + 1> &v) {
vec<N> r;
for (int i = 0; i < N; ++i) {
r[i] = v[i] / (1 - v[N]);
}
return r;
}
template<unsigned N>
vec<N> ortho(const vec<N + 1> &v) {
vec<N> r;
for (int i = 0; i < N; ++i) {
r[i] = v[i];
}
return r;
}
template<class V>
V project(const V &vec, const V &target) {
return vec.dot(target) / target.dot(target) * target;
}
template<class V>
V reflect(const V &a, const V &axis) {
return a - 2.f * project(a, axis);
}
template<class V>
V gram_schmidt_last(std::vector<V> vecs) {
for (int i = 0; i < vecs.size(); ++i) {
for (int j = 0; j < i; ++j) {
vecs[i] -= project(vecs[i], vecs[j]);
}
}
return vecs[vecs.size() - 1].normalized();
}
template<class V, class C>
V barycentric(const std::vector<V> &basis, const C &coords) {
V res = V::Zero();
int N = std::min((int) basis.size(), (int) coords.rows());
for (int i = 0; i < N; ++i) {
res += basis[i] * coords[i];
}
return res;
}
template<class V>
std::vector<V> plane_intersections(std::vector<V> normals) {
std::vector<V> results(normals.size());
for (int i = 0; i < normals.size(); ++i) {
std::rotate(normals.begin(), normals.begin() + 1, normals.end());
results[i] = gram_schmidt_last(normals);
}
return results;
}
template<unsigned N>
mat<N> rot(int u, int v, float theta) {
mat<N> res = mat<N>::Identity();
res(u, u) = std::cos(theta);
res(u, v) = std::sin(theta);
res(v, u) = -std::sin(theta);
res(v, v) = std::cos(theta);
return res;
}

233
include/geo/solver.hpp Normal file
View File

@@ -0,0 +1,233 @@
#pragma once
#include <tc/core.hpp>
#include <cmath>
#include <optional>
#include <numeric>
#include <iostream>
#include <geo/geometry.hpp>
#include "combo.hpp"
/**
* Produce a list of all generators for the group context. The range [0..group.ngens).
*/
std::vector<int> generators(const tc::Group &context) {
// todo if tc::Group has 'global' generators, then this will be a member of tc::Group.
// std::iota would populate a 'default' list of names, if names are not provided.
std::vector<int> g_gens(context.ngens);
std::iota(g_gens.begin(), g_gens.end(), 0);
return g_gens;
}
/**
* Determine which of g_gens are the correct names for sg_gens within the current context
*/
std::vector<int> recontext_gens(
const tc::Group &context,
std::vector<int> g_gens,
std::vector<int> sg_gens) {
// todo ideally tc::Group will deal in 'global' generators so this stell will be unecessary.
std::sort(g_gens.begin(), g_gens.end());
int inv_gen_map[context.ngens];
for (size_t i = 0; i < g_gens.size(); i++) {
inv_gen_map[g_gens[i]] = i;
}
std::vector<int> s_sg_gens;
s_sg_gens.reserve(sg_gens.size());
for (const auto gen: sg_gens) {
s_sg_gens.push_back(inv_gen_map[gen]);
}
std::sort(s_sg_gens.begin(), s_sg_gens.end());
return s_sg_gens;
}
/**
* Solve the cosets generated by sg_gens within the subgroup generated by g_gens of the group context
*/
tc::Cosets solve(
const tc::Group &context,
const std::vector<int> &g_gens,
const std::vector<int> &sg_gens
) {
// todo this should also be handled with 'global' generators.
const auto proper_sg_gens = recontext_gens(context, g_gens, sg_gens);
return context.subgroup(g_gens).solve(proper_sg_gens);
}
/**
* Apply some context transformation to all primitives of this mesh.
*/
template<unsigned N>
void apply(const tc::Cosets &table, int gen, Prims<N> &mat) {
auto data = mat.data();
for (int i = 0; i < mat.size(); ++i) {
data[i] = table.get(data[i], gen);
}
}
/**
* Convert the indexes of this mesh to those of a different context, using g_gens to build the parent context and sg_gens to build this context.
*/
template<unsigned N>
[[nodiscard]]
Prims<N> recontext(
Prims<N> prims,
const tc::Group &context,
const std::vector<int> &g_gens,
const std::vector<int> &sg_gens
) {
// todo this will be simpler with 'global' gens, but it's still not free...
const auto proper_sg_gens = recontext_gens(context, g_gens, sg_gens);
const auto table = solve(context, g_gens, {});
const auto path = solve(context, sg_gens, {}).path;
auto map = path.template walk<int, int>(0, proper_sg_gens, [table](int coset, int gen) {
return table.get(coset, gen);
});
Prims<N> res(prims);
auto data = res.data();
for (int i = 0; i < prims.size(); ++i) {
data[i] = map[data[i]];
}
return res;
}
/**
* Union several meshes of the same dimension
*/
template<unsigned N>
Prims<N> merge(const std::vector<Prims<N>> &meshes) {
// todo (?) might be possible with NullaryExpr
size_t cols = 0;
for (const auto &mesh: meshes) {
cols += mesh.cols();
}
Prims<N> res(N, cols);
size_t offset = 0;
for (const Prims<N> &mesh: meshes) {
res.middleCols(offset, mesh.cols()) = mesh;
offset += mesh.cols();
}
return res;
}
template<unsigned N>
[[nodiscard]]
std::vector<Prims<N>> tile(
Prims<N> prims,
const tc::Group &context,
const std::vector<int> &g_gens,
const std::vector<int> &sg_gens
) {
// todo convert to nullaryexpr.
// some stuff will be easier with global generators, but not all.
Prims<N> base = recontext<N>(prims, context, g_gens, sg_gens);
const auto proper_sg_gens = recontext_gens(context, g_gens, sg_gens);
const auto table = solve(context, g_gens, {});
const auto path = solve(context, g_gens, sg_gens).path;
std::vector<int> _gens = generators(context);
std::vector<Prims<N>> res = path.walk<Prims<N>, int>(
base, _gens,
[&](Prims<N> from, int gen) {
apply<N>(table, gen, from);
return from;
}
);
return res;
}
/**
* Produce a mesh of higher dimension by fanning a single point to all primitives in this mesh.
*/
template<unsigned N>
[[nodiscard]]
Prims<N + 1> fan(Prims<N> prims, int root) {
// todo convert to nullaryexpr.
Prims<N + 1> res(N + 1, prims.cols());
res.topRows(1) = Prims<1>::Constant(1, prims.cols(), root);
res.bottomRows(N) = prims;
return res;
}
/**
* Produce a mesh of primitives that fill out the volume of the subgroup generated by generators g_gens within the group context
*/
template<unsigned N>
Prims<N> triangulate(
const tc::Group &context,
const std::vector<int> &g_gens
) {
// todo (?) might be possible with nullaryexpr
// not so sure, though.
if (g_gens.size() + 1 != N) // todo make static assert
throw std::logic_error("g_gens size must be one less than N");
const auto &combos = combinations(g_gens, g_gens.size() - 1);
std::vector<Prims<N>> meshes;
for (const auto &sg_gens: combos) {
auto base = triangulate<N - 1>(context, sg_gens);
auto parts = tile<N - 1>(base, context, g_gens, sg_gens);
parts.erase(parts.begin(), parts.begin() + 1);
auto raised = merge<N - 1>(parts);
auto fanned = fan<N - 1>(raised, 0);
meshes.push_back(fanned);
}
return merge<N>(meshes);
}
/**
* Single-index primitives should not be further triangulated.
*/
template<>
Prims<1> triangulate<1>(
const tc::Group &context,
const std::vector<int> &g_gens
) {
if (not g_gens.empty()) // todo make static assert
throw std::logic_error("g_gens must be empty for a trivial Mesh");
return Prims<1>::Zero(1, 1);
}
template<unsigned N, class T>
auto hull(const tc::Group &group, T all_sg_gens, const std::vector<std::vector<int>> &exclude) {
std::vector<Prims<N>> parts;
auto g_gens = generators(group);
for (const std::vector<int> &sg_gens: all_sg_gens) {
bool excluded = false;
for (const auto &test: exclude) {
if (sg_gens == test) {
excluded = true;
break;
}
}
if (excluded) continue;
const auto &base = triangulate<N>(group, sg_gens);
const auto &tiles = tile<N>(base, group, g_gens, sg_gens);
for (const auto &tile: tiles) {
parts.push_back(tile);
}
}
return parts;
}