#pragma once #include #include #include #include #include #include "combo_iterator.hpp" size_t get_key_from_gens(std::vector &gens) { size_t key = 0; for (const auto gen : gens) { key += (1u << (unsigned) gen); } return key; } size_t num_gens_from_key(size_t key) { size_t mask = 1; size_t count = 0; while (mask <= key) { if (key & mask) count++; mask <<= 1u; } return count; } template struct Primitive { std::array inds; Primitive() = default; Primitive(const Primitive &) = default; Primitive(const Primitive &sub, unsigned root) { std::copy(sub.inds.begin(), sub.inds.end(), inds.begin()); inds[N - 1] = root; } ~Primitive() = default; inline void flip() { if (N > 1) std::swap(inds[0], inds[1]); } void apply(const tc::Cosets &table, int gen) { for (auto &ind : inds) { ind = table.get(ind, gen); } flip(); } }; std::vector gens(const tc::Group &context) { std::vector g_gens(context.ngens); std::iota(g_gens.begin(), g_gens.end(), 0); return g_gens; } std::vector recontext_gens( const tc::Group &context, std::vector g_gens, std::vector sg_gens) { std::sort(g_gens.begin(), g_gens.end()); int inv_gen_map[context.ngens]; for (size_t i = 0; i < g_gens.size(); i++) { inv_gen_map[g_gens[i]] = i; } std::vector s_sg_gens; s_sg_gens.reserve(sg_gens.size()); for (const auto gen : sg_gens) { s_sg_gens.push_back(inv_gen_map[gen]); } std::sort(s_sg_gens.begin(), s_sg_gens.end()); return s_sg_gens; // std::sort(g_gens.begin(), g_gens.end()); // // std::vector inv_g_map(g_gens.size()); // for (int i = 0; i < g_gens.size(); ++i) { // inv_g_map[g_gens[i]] = i; // } // // std::transform(sg_gens.begin(), sg_gens.end(), sg_gens.begin(), // [inv_g_map](const auto &gen) { // return inv_g_map[gen]; // } // ); // // std::sort(sg_gens.begin(), sg_gens.end()); // return sg_gens; } int get_parity( const tc::Group &context, const std::vector &g_gens, const std::vector &sg_gens ) { if (g_gens.size() != sg_gens.size() + 1) return 0; const auto proper_sg_gens = recontext_gens(context, g_gens, sg_gens); int i = 0; for (; i < sg_gens.size(); ++i) { if (proper_sg_gens[i] != i) { break; } } return i & 1; } tc::Cosets solve( const tc::Group &context, const std::vector &g_gens, const std::vector &sg_gens ) { const auto proper_sg_gens = recontext_gens(context, g_gens, sg_gens); return context.subgroup(g_gens).solve(proper_sg_gens); } tc::Cosets solve_sg( const tc::Group &context, const std::vector &sg_gens ) { return solve(context, gens(context), sg_gens); } tc::Cosets solve_g( const tc::Group &context, const std::vector &g_gens ) { std::vector sg_gens; return solve(context, g_gens, sg_gens); } tc::Cosets solve( const tc::Group &context ) { std::vector sg_gens; return solve_sg(context, sg_gens); } template struct Mesh { std::vector> prims; Mesh() : prims() {} Mesh(const Mesh &) = default; explicit Mesh(std::vector> &prims) : prims(prims) {} [[nodiscard]] size_t size() const { return prims.size(); } void apply(const tc::Cosets &table, int gen) { for (auto &prim : prims) { prim.apply(table, gen); } } void flip() { for (auto &prim : prims) { prim.flip(); } } [[nodiscard]] Mesh recontext( const tc::Group &context, const std::vector &g_gens, const std::vector &sg_gens ) const { const auto proper_sg_gens = recontext_gens(context, g_gens, sg_gens); // todo memo recontext const auto table = solve_g(context, g_gens); const auto path = solve_g(context, sg_gens).path; auto map = path.template walk(0, proper_sg_gens, [table](int coset, int gen) { return table.get(coset, gen); }); Mesh res = *this; for (Primitive &prim : res.prims) { for (auto &ind : prim.inds) { ind = map[ind]; } } if (get_parity(context, g_gens, sg_gens) == 1) res.flip(); return res; } [[nodiscard]] Mesh tile( const tc::Group &context, const std::vector &g_gens, const std::vector &sg_gens ) const { Mesh base = recontext(context, g_gens, sg_gens); const auto proper_sg_gens = recontext_gens(context, g_gens, sg_gens); // todo memo tile const auto table = solve_g(context, g_gens); const auto path = solve(context, g_gens, sg_gens).path; const auto all = path.template walk, int>(base, gens(context), [table](Mesh from, int gen) { from.apply(table, gen); return from; }); return merge(all); } [[nodiscard]] Mesh fan(int root) const { std::vector> res(prims.size()); std::transform(prims.begin(), prims.end(), res.begin(), [root](const Primitive &prim) { return Primitive(prim, root); } ); return Mesh(res); } }; template Mesh merge(const std::vector> &meshes) { size_t size = 0; for (const auto &mesh : meshes) { size += mesh.size(); } std::vector> prims; prims.reserve(size); for (const auto &mesh : meshes) { prims.insert(prims.end(), mesh.prims.begin(), mesh.prims.end()); } return Mesh(prims); } template Mesh triangulate( const tc::Group &context, const std::vector &g_gens ) { if (g_gens.size() + 1 != N) throw std::logic_error("g_gens size must be one less than N"); const auto &combos = Combos(g_gens, g_gens.size() - 1); std::vector> meshes; for (const auto &sg_gens : combos) { Mesh base = triangulate(context, sg_gens); Mesh raised = base.tile(context, g_gens, sg_gens); raised.prims.erase(raised.prims.begin(), raised.prims.begin() + base.size()); Mesh fan = raised.fan(0); meshes.push_back(fan); } return merge(meshes); } template<> Mesh<1> triangulate<1>( const tc::Group &context, const std::vector &g_gens ) { if (not g_gens.empty()) throw std::logic_error("g_gens must be empty for a trivial Mesh"); Mesh<1> res; res.prims.emplace_back(); return res; } //template //struct GeomGen { // std::vector>> coset_memo; // std::vector>> triangulate_memo; // tc::Group &context; // // explicit GeomGen(tc::Group &g) : context(g) { // size_t num_sg = std::pow(2, g.ngens); // coset_memo.resize(num_sg); // triangulate_memo.resize(num_sg); // for (size_t i = 0; i < num_sg; i++) { // auto num_sg_sg = std::pow(2, num_gens_from_key(i)); // coset_memo[i].resize(num_sg_sg, std::nullopt); // } // } // // std::vector group_gens() { // std::vector gens(context.ngens); // for (int i = 0; i < context.ngens; i++) { // gens[i] = i; // } // return gens; // } // // std::vector prepare_gens(std::vector &g_gens, std::vector &sg_gens) { // std::sort(g_gens.begin(), g_gens.end()); // // int inv_gen_map[context.ngens]; // for (size_t i = 0; i < g_gens.size(); i++) { // inv_gen_map[g_gens[i]] = i; // } // // std::vector s_sg_gens; // s_sg_gens.reserve(sg_gens.size()); // for (const auto gen : sg_gens) { // s_sg_gens.push_back(inv_gen_map[gen]); // } // std::sort(s_sg_gens.begin(), s_sg_gens.end()); // // return s_sg_gens; // } // // int get_parity(std::vector &g_gens, std::vector &sg_gens) { // if (g_gens.size() != sg_gens.size() + 1) // return 0; // auto s_sg_gens = prepare_gens(g_gens, sg_gens); // const int loop_max = g_gens.size() - 1; // for (int i = 0; i < loop_max; i++) { // if (s_sg_gens[i] != i) // return i % 2; // } // return loop_max % 2; // } // // tc::Cosets _solve(std::vector &g_gens, std::vector &sg_gens) { // auto s_sg_gens = prepare_gens(g_gens, sg_gens); // // size_t group_key = get_key_from_gens(g_gens); // size_t subgroup_key = get_key_from_gens(s_sg_gens); // // if (!coset_memo[group_key][subgroup_key]) { // tc::SubGroup g = context.subgroup(g_gens); // coset_memo[group_key][subgroup_key] = g.solve(s_sg_gens); // } // return *coset_memo[group_key][subgroup_key]; // } // // tc::Cosets solve(std::vector g_gens, std::vector sg_gens) { // return _solve(g_gens, sg_gens); // } // // tc::Cosets solve_sg(std::vector &sg_gens) { // auto g_gens = group_gens(); // return _solve(g_gens, sg_gens); // } // // tc::Cosets solve_g(std::vector &g_gens) { // std::vector sg_gens; // return _solve(g_gens, sg_gens); // } // // tc::Cosets solve() { // std::vector sg_gens; // return solve_sg(sg_gens); // } // // Mesh recontext(std::vector &g_gens, std::vector &sg_gens, const Mesh &items) { // auto s_sg_gens = prepare_gens(g_gens, sg_gens); // auto table = solve_g(g_gens); // auto path = solve_g(sg_gens).path; // // auto coset_map = [table](int coset, int gen) { return table.get(coset, gen); }; // // auto map = path.template walk(0, s_sg_gens, coset_map); // // Mesh ret; // ret.vals.reserve(items.size()); // for (const auto val : items.vals) { // ret.vals.push_back(map[val]); // } // if (get_parity(g_gens, sg_gens) == 1) // ret.flip(); // return ret; // } // // Mesh tile(std::vector &g_gens, std::vector &sg_gens, const Mesh &items) { // Mesh base = recontext(g_gens, sg_gens, items); // auto s_sg_gens = prepare_gens(g_gens, sg_gens); // auto table = solve_g(g_gens); // auto path = _solve(g_gens, sg_gens).path; // // auto simplex_map = [table](Mesh from, int gen) -> Mesh { // for (auto &prim : from.prims) { // prim.apply(table, gen); // } // from.flip(); // return from; // }; // // auto r = path.template walk, int>(base, group_gens(), simplex_map); // // return merge(r); // } // // Mesh triangulate(std::vector &g_gens); // // Mesh<1> _triangulate(std::vector &g_gens) { // Mesh<1> m; // m.prims.emplace_back(); // return m; // } // // Mesh _triangulate(std::vector &g_gens) { // // Mesh S; // if (g_gens.empty()) { // S.prims.push_back(Primitive()); // return S; // } // // GeomGen gg(context); // for (std::vector sg_gens : Combos(g_gens, g_gens.size() - 1)) { // Mesh sub_simps = gg.triangulate(sg_gens); // int start = sub_simps.size(); // Mesh raised = tile(g_gens, sg_gens, sub_simps); // // for (const Primitive &prim : raised.prims) { // S.prims.push_back(Primitive(prim, 0)); // } // //// for (int l = start; l < raised.size(); l += g_gens.size()) { //// for (int m = l; m < l + g_gens.size(); m++) { //// S.vals.push_back(raised.vals[m]); //// } //// S.vals.push_back(0); //// } // } // return S; // } //}; // //template //Mesh GeomGen::triangulate(std::vector &g_gens) { // int key = get_key_from_gens(g_gens); // if (!triangulate_memo[key]) { // triangulate_memo[key] = _triangulate(g_gens); // } // return *triangulate_memo[key]; //}