Files
toddcox-visualize/vis/include/geometry.hpp

453 lines
12 KiB
C++

#pragma once
#include <tc/core.hpp>
#include <cmath>
#include <optional>
#include <numeric>
#include <iostream>
#include "combo_iterator.hpp"
size_t get_key_from_gens(std::vector<int> &gens) {
size_t key = 0;
for (const auto gen : gens) {
key += (1u << (unsigned) gen);
}
return key;
}
size_t num_gens_from_key(size_t key) {
size_t mask = 1;
size_t count = 0;
while (mask <= key) {
if (key & mask)
count++;
mask <<= 1u;
}
return count;
}
template<unsigned N>
struct Primitive {
std::array<unsigned, N> inds;
Primitive() = default;
Primitive(const Primitive<N> &) = default;
Primitive(const Primitive<N - 1> &sub, unsigned root) {
std::copy(sub.inds.begin(), sub.inds.end(), inds.begin());
inds[N - 1] = root;
}
~Primitive() = default;
inline void flip() {
if (N > 1) std::swap(inds[0], inds[1]);
}
void apply(const tc::Cosets &table, int gen) {
for (auto &ind : inds) {
ind = table.get(ind, gen);
}
flip();
}
};
std::vector<int> gens(const tc::Group &context) {
std::vector<int> g_gens(context.ngens);
std::iota(g_gens.begin(), g_gens.end(), 0);
return g_gens;
}
std::vector<int> recontext_gens(
const tc::Group &context,
std::vector<int> g_gens,
std::vector<int> sg_gens) {
std::sort(g_gens.begin(), g_gens.end());
int inv_gen_map[context.ngens];
for (size_t i = 0; i < g_gens.size(); i++) {
inv_gen_map[g_gens[i]] = i;
}
std::vector<int> s_sg_gens;
s_sg_gens.reserve(sg_gens.size());
for (const auto gen : sg_gens) {
s_sg_gens.push_back(inv_gen_map[gen]);
}
std::sort(s_sg_gens.begin(), s_sg_gens.end());
return s_sg_gens;
// std::sort(g_gens.begin(), g_gens.end());
//
// std::vector<int> inv_g_map(g_gens.size());
// for (int i = 0; i < g_gens.size(); ++i) {
// inv_g_map[g_gens[i]] = i;
// }
//
// std::transform(sg_gens.begin(), sg_gens.end(), sg_gens.begin(),
// [inv_g_map](const auto &gen) {
// return inv_g_map[gen];
// }
// );
//
// std::sort(sg_gens.begin(), sg_gens.end());
// return sg_gens;
}
int get_parity(
const tc::Group &context,
const std::vector<int> &g_gens,
const std::vector<int> &sg_gens
) {
if (g_gens.size() != sg_gens.size() + 1) return 0;
const auto proper_sg_gens = recontext_gens(context, g_gens, sg_gens);
int i = 0;
for (; i < sg_gens.size(); ++i) {
if (proper_sg_gens[i] != i) {
break;
}
}
return i & 1;
}
tc::Cosets solve(
const tc::Group &context,
const std::vector<int> &g_gens,
const std::vector<int> &sg_gens
) {
const auto proper_sg_gens = recontext_gens(context, g_gens, sg_gens);
return context.subgroup(g_gens).solve(proper_sg_gens);
}
tc::Cosets solve_sg(
const tc::Group &context,
const std::vector<int> &sg_gens
) {
return solve(context, gens(context), sg_gens);
}
tc::Cosets solve_g(
const tc::Group &context,
const std::vector<int> &g_gens
) {
std::vector<int> sg_gens;
return solve(context, g_gens, sg_gens);
}
tc::Cosets solve(
const tc::Group &context
) {
std::vector<int> sg_gens;
return solve_sg(context, sg_gens);
}
template<unsigned N>
struct Mesh {
std::vector<Primitive<N>> prims;
Mesh() : prims() {}
Mesh(const Mesh<N> &) = default;
explicit Mesh(std::vector<Primitive<N>> &prims) : prims(prims) {}
[[nodiscard]] size_t size() const {
return prims.size();
}
void apply(const tc::Cosets &table, int gen) {
for (auto &prim : prims) {
prim.apply(table, gen);
}
}
void flip() {
for (auto &prim : prims) {
prim.flip();
}
}
Mesh<N> recontext(
const tc::Group &context,
const std::vector<int> &g_gens,
const std::vector<int> &sg_gens
) {
const auto proper_sg_gens = recontext_gens(context, g_gens, sg_gens);
// todo memo recontext
const auto table = solve_g(context, g_gens);
const auto path = solve_g(context, sg_gens).path;
auto map = path.template walk<int, int>(0, proper_sg_gens, [table](int coset, int gen) {
return table.get(coset, gen);
});
Mesh<N> res = *this;
for (Primitive<N> &prim : res.prims) {
for (auto &ind : prim.inds) {
ind = map[ind];
}
}
if (get_parity(context, g_gens, sg_gens) == 1)
res.flip();
return res;
}
Mesh<N> tile(
const tc::Group &context,
const std::vector<int> &g_gens,
const std::vector<int> &sg_gens
) {
Mesh<N> base = recontext(context, g_gens, sg_gens);
const auto proper_sg_gens = recontext_gens(context, g_gens, sg_gens);
// todo memo tile
const auto table = solve_g(context, g_gens);
const auto path = solve(context, g_gens, sg_gens).path;
const auto all = path.template walk<Mesh<N>, int>(base, g_gens, [table](Mesh<N> from, int gen) {
from.apply(table, gen);
return from;
});
return merge(all);
}
Mesh<N + 1> fan(int root) {
std::vector<Primitive<N + 1>> res(prims.size());
std::transform(prims.begin(), prims.end(), res.begin(),
[root](const Primitive<N> &prim) {
return Primitive<N + 1>(prim, root);
}
);
return Mesh<N + 1>(res);
}
};
template<unsigned N>
Mesh<N> merge(const std::vector<Mesh<N>> &meshes) {
size_t size = 0;
for (const auto &mesh : meshes) {
size += mesh.size();
}
std::vector<Primitive<N>> prims;
prims.reserve(size);
for (const auto &mesh : meshes) {
prims.insert(prims.end(), mesh.prims.begin(), mesh.prims.end());
}
return Mesh(prims);
}
template<unsigned N>
Mesh<N> triangulate(
const tc::Group &context,
const std::vector<int> &g_gens
) {
if (g_gens.size() + 1 != N)
throw std::logic_error("g_gens size must be one less than N");
const auto &combos = Combos(g_gens, g_gens.size() - 1);
std::vector<Mesh<N>> meshes;
for (const auto &sg_gens : combos) {
Mesh<N - 1> base = triangulate<N - 1>(context, sg_gens);
Mesh<N - 1> raised = base.tile(context, g_gens, sg_gens);
raised.prims.erase(raised.prims.begin(), raised.prims.begin() + base.size());
Mesh<N> fan = raised.fan(0);
meshes.push_back(fan);
}
return merge(meshes);
}
template<>
Mesh<1> triangulate<1>(
const tc::Group &context,
const std::vector<int> &g_gens
) {
if (not g_gens.empty())
throw std::logic_error("g_gens must be empty for a trivial Mesh");
Mesh<1> res;
res.prims.emplace_back();
return res;
}
//template<unsigned N>
//struct GeomGen {
// std::vector<std::vector<std::optional<tc::Cosets>>> coset_memo;
// std::vector<std::optional<Mesh<N>>> triangulate_memo;
// tc::Group &context;
//
// explicit GeomGen(tc::Group &g) : context(g) {
// size_t num_sg = std::pow(2, g.ngens);
// coset_memo.resize(num_sg);
// triangulate_memo.resize(num_sg);
// for (size_t i = 0; i < num_sg; i++) {
// auto num_sg_sg = std::pow(2, num_gens_from_key(i));
// coset_memo[i].resize(num_sg_sg, std::nullopt);
// }
// }
//
// std::vector<int> group_gens() {
// std::vector<int> gens(context.ngens);
// for (int i = 0; i < context.ngens; i++) {
// gens[i] = i;
// }
// return gens;
// }
//
// std::vector<int> prepare_gens(std::vector<int> &g_gens, std::vector<int> &sg_gens) {
// std::sort(g_gens.begin(), g_gens.end());
//
// int inv_gen_map[context.ngens];
// for (size_t i = 0; i < g_gens.size(); i++) {
// inv_gen_map[g_gens[i]] = i;
// }
//
// std::vector<int> s_sg_gens;
// s_sg_gens.reserve(sg_gens.size());
// for (const auto gen : sg_gens) {
// s_sg_gens.push_back(inv_gen_map[gen]);
// }
// std::sort(s_sg_gens.begin(), s_sg_gens.end());
//
// return s_sg_gens;
// }
//
// int get_parity(std::vector<int> &g_gens, std::vector<int> &sg_gens) {
// if (g_gens.size() != sg_gens.size() + 1)
// return 0;
// auto s_sg_gens = prepare_gens(g_gens, sg_gens);
// const int loop_max = g_gens.size() - 1;
// for (int i = 0; i < loop_max; i++) {
// if (s_sg_gens[i] != i)
// return i % 2;
// }
// return loop_max % 2;
// }
//
// tc::Cosets _solve(std::vector<int> &g_gens, std::vector<int> &sg_gens) {
// auto s_sg_gens = prepare_gens(g_gens, sg_gens);
//
// size_t group_key = get_key_from_gens(g_gens);
// size_t subgroup_key = get_key_from_gens(s_sg_gens);
//
// if (!coset_memo[group_key][subgroup_key]) {
// tc::SubGroup g = context.subgroup(g_gens);
// coset_memo[group_key][subgroup_key] = g.solve(s_sg_gens);
// }
// return *coset_memo[group_key][subgroup_key];
// }
//
// tc::Cosets solve(std::vector<int> g_gens, std::vector<int> sg_gens) {
// return _solve(g_gens, sg_gens);
// }
//
// tc::Cosets solve_sg(std::vector<int> &sg_gens) {
// auto g_gens = group_gens();
// return _solve(g_gens, sg_gens);
// }
//
// tc::Cosets solve_g(std::vector<int> &g_gens) {
// std::vector<int> sg_gens;
// return _solve(g_gens, sg_gens);
// }
//
// tc::Cosets solve() {
// std::vector<int> sg_gens;
// return solve_sg(sg_gens);
// }
//
// Mesh<N> recontext(std::vector<int> &g_gens, std::vector<int> &sg_gens, const Mesh<N> &items) {
// auto s_sg_gens = prepare_gens(g_gens, sg_gens);
// auto table = solve_g(g_gens);
// auto path = solve_g(sg_gens).path;
//
// auto coset_map = [table](int coset, int gen) { return table.get(coset, gen); };
//
// auto map = path.template walk<int, int>(0, s_sg_gens, coset_map);
//
// Mesh<N> ret;
// ret.vals.reserve(items.size());
// for (const auto val : items.vals) {
// ret.vals.push_back(map[val]);
// }
// if (get_parity(g_gens, sg_gens) == 1)
// ret.flip();
// return ret;
// }
//
// Mesh<N> tile(std::vector<int> &g_gens, std::vector<int> &sg_gens, const Mesh<N> &items) {
// Mesh<N> base = recontext(g_gens, sg_gens, items);
// auto s_sg_gens = prepare_gens(g_gens, sg_gens);
// auto table = solve_g(g_gens);
// auto path = _solve(g_gens, sg_gens).path;
//
// auto simplex_map = [table](Mesh<N> from, int gen) -> Mesh<N> {
// for (auto &prim : from.prims) {
// prim.apply(table, gen);
// }
// from.flip();
// return from;
// };
//
// auto r = path.template walk<Mesh<N>, int>(base, group_gens(), simplex_map);
//
// return merge(r);
// }
//
// Mesh<N> triangulate(std::vector<int> &g_gens);
//
// Mesh<1> _triangulate(std::vector<int> &g_gens) {
// Mesh<1> m;
// m.prims.emplace_back();
// return m;
// }
//
// Mesh<N> _triangulate(std::vector<int> &g_gens) {
//
// Mesh<N> S;
// if (g_gens.empty()) {
// S.prims.push_back(Primitive<N>());
// return S;
// }
//
// GeomGen<N - 1> gg(context);
// for (std::vector<int> sg_gens : Combos(g_gens, g_gens.size() - 1)) {
// Mesh<N - 1> sub_simps = gg.triangulate(sg_gens);
// int start = sub_simps.size();
// Mesh<N - 1> raised = tile(g_gens, sg_gens, sub_simps);
//
// for (const Primitive<N - 1> &prim : raised.prims) {
// S.prims.push_back(Primitive<N>(prim, 0));
// }
//
//// for (int l = start; l < raised.size(); l += g_gens.size()) {
//// for (int m = l; m < l + g_gens.size(); m++) {
//// S.vals.push_back(raised.vals[m]);
//// }
//// S.vals.push_back(0);
//// }
// }
// return S;
// }
//};
//
//template<unsigned N>
//Mesh<N> GeomGen<N>::triangulate(std::vector<int> &g_gens) {
// int key = get_key_from_gens(g_gens);
// if (!triangulate_memo[key]) {
// triangulate_memo[key] = _triangulate(g_gens);
// }
// return *triangulate_memo[key];
//}