mirror of
https://github.com/allemangD/toddcox-visualize.git
synced 2025-11-10 12:02:47 -05:00
107 lines
2.4 KiB
C++
107 lines
2.4 KiB
C++
#pragma once
|
|
|
|
#include <tc/core.hpp>
|
|
|
|
#include <cmath>
|
|
#include <vector>
|
|
#include <algorithm>
|
|
|
|
#include <geometry.hpp>
|
|
|
|
template<unsigned int N>
|
|
Eigen::Matrix<float, N, N> mirror(const tc::Group<> &group) {
|
|
Eigen::Matrix<float, N, N> res;
|
|
res.setZero();
|
|
|
|
for (int c = 0; c < group.rank(); ++c) {
|
|
for (int r = 0; r < c; ++r) {
|
|
auto angle = M_PI / group.get(c, r);
|
|
auto dot = res.col(c).dot(res.col(r));
|
|
|
|
res(r, c) = (cos(angle) - dot) / res(r, r);
|
|
}
|
|
|
|
res(c, c) = sqrt(1 - res.col(c).squaredNorm());
|
|
res.col(c) *= -1;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
template<unsigned N>
|
|
vec<N> stereo(const vec<N + 1> &v) {
|
|
vec<N> r;
|
|
for (int i = 0; i < N; ++i) {
|
|
r[i] = v[i] / (1 - v[N]);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
template<unsigned N>
|
|
vec<N> ortho(const vec<N + 1> &v) {
|
|
vec<N> r;
|
|
for (int i = 0; i < N; ++i) {
|
|
r[i] = v[i];
|
|
}
|
|
return r;
|
|
}
|
|
|
|
template<class V>
|
|
V project(const V &vec, const V &target) {
|
|
return vec.dot(target) / target.dot(target) * target;
|
|
}
|
|
|
|
template<class V>
|
|
V reflect(const V &a, const V &axis) {
|
|
return a - 2.f * project(a, axis);
|
|
}
|
|
|
|
template<class Point, class Axis>
|
|
auto project_(const Point &point, const Axis &axis) {
|
|
return axis.dot(point) / axis.dot(axis) * axis;
|
|
}
|
|
|
|
template<class Mat>
|
|
Mat gram_schmidt(Mat mat) {
|
|
for (int i = 0; i < mat.cols(); ++i) {
|
|
for (int j = i + 1; j < mat.cols(); ++j) {
|
|
mat.col(j) -= project_(mat.col(j), mat.col(i));
|
|
}
|
|
}
|
|
return mat;
|
|
}
|
|
|
|
template<class Mat>
|
|
Mat plane_intersections(Mat normals) {
|
|
auto last = normals.cols() - 1;
|
|
|
|
Mat results(normals.rows(), normals.cols());
|
|
results.setZero();
|
|
|
|
Eigen::Matrix<int, Mat::ColsAtCompileTime, 1> indices(normals.cols());
|
|
std::iota(indices.begin(), indices.end(), 0);
|
|
|
|
for (int i = 0; i < normals.cols(); ++i) {
|
|
std::rotate(indices.begin(), indices.begin() + 1, indices.end());
|
|
|
|
Mat cur = normals * Eigen::PermutationMatrix<Mat::ColsAtCompileTime>(indices);
|
|
Mat res = gram_schmidt(cur);
|
|
|
|
results.col(i) = res.col(last);
|
|
}
|
|
|
|
results.colwise().normalize();
|
|
|
|
return results;
|
|
}
|
|
|
|
template<unsigned N>
|
|
mat<N> rot(int u, int v, float theta) {
|
|
mat<N> res = mat<N>::Identity();
|
|
res(u, u) = std::cos(theta);
|
|
res(u, v) = std::sin(theta);
|
|
res(v, u) = -std::sin(theta);
|
|
res(v, v) = std::cos(theta);
|
|
return res;
|
|
}
|