Files
toddcox-visualize/vis/include/geometry.hpp

267 lines
6.9 KiB
C++

#pragma once
#include <tc/core.hpp>
#include <cmath>
#include <optional>
#include <numeric>
#include <iostream>
#include "combo_iterator.hpp"
/**
* An primitive with N indices.
* @tparam N
*/
template<unsigned N>
struct Primitive {
static_assert(N > 0, "Primitives must contain at least one point. Primitive<0> or lower is impossible.");
std::array<unsigned, N> inds;
Primitive() = default;
Primitive(const Primitive<N> &) = default;
Primitive(const Primitive<N - 1> &sub, unsigned root) {
std::copy(sub.inds.begin(), sub.inds.end(), inds.begin());
inds[N - 1] = root;
}
~Primitive() = default;
inline void flip() {
if (N > 1) std::swap(inds[0], inds[1]);
}
void apply(const tc::Cosets &table, int gen) {
for (auto &ind : inds) {
ind = table.get(ind, gen);
}
flip();
}
};
/**
* Produce a list of all generators for the group context. The range [0..group.ngens).
*/
std::vector<int> gens(const tc::Group &context) {
std::vector<int> g_gens(context.ngens);
std::iota(g_gens.begin(), g_gens.end(), 0);
return g_gens;
}
/**
* Determine which of g_gens are the correct names for sg_gens within the current context
*/
std::vector<int> recontext_gens(
const tc::Group &context,
std::vector<int> g_gens,
std::vector<int> sg_gens) {
std::sort(g_gens.begin(), g_gens.end());
int inv_gen_map[context.ngens];
for (size_t i = 0; i < g_gens.size(); i++) {
inv_gen_map[g_gens[i]] = i;
}
std::vector<int> s_sg_gens;
s_sg_gens.reserve(sg_gens.size());
for (const auto gen : sg_gens) {
s_sg_gens.push_back(inv_gen_map[gen]);
}
std::sort(s_sg_gens.begin(), s_sg_gens.end());
return s_sg_gens;
}
/**
* Determine whether the orientation of the group sg_gens is reversed from the group g_gens within group context
*/
int get_parity(
const tc::Group &context,
const std::vector<int> &g_gens,
const std::vector<int> &sg_gens
) {
if (g_gens.size() != sg_gens.size() + 1) return 0;
const auto proper_sg_gens = recontext_gens(context, g_gens, sg_gens);
int i = 0;
for (; i < sg_gens.size(); ++i) {
if (proper_sg_gens[i] != i) {
break;
}
}
return i & 1;
}
/**
* Solve the cosets generated by sg_gens within the subgroup generated by g_gens of the group context
*/
tc::Cosets solve(
const tc::Group &context,
const std::vector<int> &g_gens,
const std::vector<int> &sg_gens
) {
const auto proper_sg_gens = recontext_gens(context, g_gens, sg_gens);
return context.subgroup(g_gens).solve(proper_sg_gens);
}
template<unsigned N>
struct Mesh {
std::vector<Primitive<N>> prims;
Mesh() : prims() {}
Mesh(const Mesh<N> &) = default;
explicit Mesh(std::vector<Primitive<N>> &prims) : prims(prims) {}
[[nodiscard]] size_t size() const {
return prims.size();
}
/**
* Apply some context transformation to all primitives of this mesh.
*/
void apply(const tc::Cosets &table, int gen) {
for (auto &prim : prims) {
prim.apply(table, gen);
}
}
/**
* Reverse the orientation of all primitives in this mesh.
*/
void flip() {
for (auto &prim : prims) {
prim.flip();
}
}
/**
* Convert the indexes of this mesh to those of a different context, using g_gens to build the parent context and sg_gens to build this context.
*/
[[nodiscard]]
Mesh<N> recontext(
const tc::Group &context,
const std::vector<int> &g_gens,
const std::vector<int> &sg_gens
) const {
const auto proper_sg_gens = recontext_gens(context, g_gens, sg_gens);
const auto table = solve(context, g_gens, {});
const auto path = solve(context, sg_gens, {}).path;
auto map = path.template walk<int, int>(0, proper_sg_gens, [table](int coset, int gen) {
return table.get(coset, gen);
});
Mesh<N> res = *this;
for (Primitive<N> &prim : res.prims) {
for (auto &ind : prim.inds) {
ind = map[ind];
}
}
if (get_parity(context, g_gens, sg_gens) == 1)
res.flip();
return res;
}
[[nodiscard]]
Mesh<N> tile(
const tc::Group &context,
const std::vector<int> &g_gens,
const std::vector<int> &sg_gens
) const {
Mesh<N> base = recontext(context, g_gens, sg_gens);
const auto proper_sg_gens = recontext_gens(context, g_gens, sg_gens);
const auto table = solve(context, g_gens, {});
const auto path = solve(context, g_gens, sg_gens).path;
const auto all = path.template walk<Mesh<N>, int>(base, gens(context), [table](Mesh<N> from, int gen) {
from.apply(table, gen);
return from;
});
return merge(all);
}
/**
* Produce a mesh of higher dimension by fanning a single point to all primitives in this mesh.
*/
[[nodiscard]]
Mesh<N + 1> fan(int root) const {
std::vector<Primitive<N + 1>> res(prims.size());
std::transform(prims.begin(), prims.end(), res.begin(),
[root](const Primitive<N> &prim) {
return Primitive<N + 1>(prim, root);
}
);
return Mesh<N + 1>(res);
}
};
/**
* Union several meshes of the same dimension
*/
template<unsigned N>
Mesh<N> merge(const std::vector<Mesh<N>> &meshes) {
size_t size = 0;
for (const auto &mesh : meshes) {
size += mesh.size();
}
std::vector<Primitive<N>> prims;
prims.reserve(size);
for (const auto &mesh : meshes) {
prims.insert(prims.end(), mesh.prims.begin(), mesh.prims.end());
}
return Mesh(prims);
}
/**
* Produce a mesh of primitives that fill out the volume of the subgroup generated by generators g_gens within the group context
*/
template<unsigned N>
Mesh<N> triangulate(
const tc::Group &context,
const std::vector<int> &g_gens
) {
if (g_gens.size() + 1 != N) // todo make static assert
throw std::logic_error("g_gens size must be one less than N");
const auto &combos = Combos(g_gens, g_gens.size() - 1);
std::vector<Mesh<N>> meshes;
for (const auto &sg_gens : combos) {
Mesh<N - 1> base = triangulate<N - 1>(context, sg_gens);
Mesh<N - 1> raised = base.tile(context, g_gens, sg_gens);
raised.prims.erase(raised.prims.begin(), raised.prims.begin() + base.size());
Mesh<N> fan = raised.fan(0);
meshes.push_back(fan);
}
return merge(meshes);
}
/**
* Single-index primitives should not be further triangulated.
*/
template<>
Mesh<1> triangulate<1>(
const tc::Group &context,
const std::vector<int> &g_gens
) {
if (not g_gens.empty()) // todo make static assert
throw std::logic_error("g_gens must be empty for a trivial Mesh");
Mesh<1> res;
res.prims.emplace_back();
return res;
}