mirror of
https://github.com/allemangD/toddcox-visualize.git
synced 2025-11-10 12:02:47 -05:00
189 lines
3.8 KiB
C++
189 lines
3.8 KiB
C++
#pragma once
|
|
|
|
#include <tc/core.hpp>
|
|
|
|
#include <cmath>
|
|
#include <vector>
|
|
#include <algorithm>
|
|
|
|
template<unsigned N>
|
|
using vec = std::array<float, N>;
|
|
|
|
using vec1 = vec<1>;
|
|
using vec2 = vec<2>;
|
|
using vec3 = vec<3>;
|
|
using vec4 = vec<4>;
|
|
using vec5 = vec<5>;
|
|
|
|
template<class V>
|
|
V operator*(V a, float b) {
|
|
for (auto &e : a) e *= b;
|
|
return a;
|
|
}
|
|
|
|
template<class V>
|
|
V operator*(float b, V a) {
|
|
for (auto &e : a) e *= b;
|
|
return a;
|
|
}
|
|
|
|
template<class V>
|
|
V operator/(V a, float b) {
|
|
for (auto &e : a) e /= b;
|
|
return a;
|
|
}
|
|
|
|
template<class V>
|
|
V operator+(V a, V b) {
|
|
for (int i = 0; i < a.size(); ++i) {
|
|
a[i] += b[i];
|
|
}
|
|
return a;
|
|
}
|
|
|
|
template<class V>
|
|
V operator-(V a, V b) {
|
|
for (int i = 0; i < a.size(); ++i) {
|
|
a[i] -= b[i];
|
|
}
|
|
return a;
|
|
}
|
|
|
|
template<class V>
|
|
void operator-=(V &a, V b) {
|
|
for (int i = 0; i < a.size(); ++i) {
|
|
a[i] -= b[i];
|
|
}
|
|
}
|
|
|
|
template<class V>
|
|
float length(V a) {
|
|
float sum = 0;
|
|
for (auto e : a) sum += e * e;
|
|
return sqrtf(sum);
|
|
}
|
|
|
|
template<class V>
|
|
V normalized(V a) {
|
|
return a / length(a);
|
|
}
|
|
|
|
template<class V>
|
|
float dot(int n, const V &a, const V &b) {
|
|
float sum = 0;
|
|
for (int i = 0; i < n; ++i) {
|
|
sum += a[i] * b[i];
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
template<class V>
|
|
float dot(const V &a, const V &b) {
|
|
float sum = 0;
|
|
for (int i = 0; i < a.size(); ++i) {
|
|
sum += a[i] * b[i];
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
template<unsigned N>
|
|
std::vector<vec<N>> mirror(const tc::Group &group) {
|
|
std::vector<std::vector<float>> mirrors;
|
|
|
|
for (int p = 0; p < group.ngens; ++p) {
|
|
std::vector<float> vp;
|
|
for (int m = 0; m < p; ++m) {
|
|
auto &vq = mirrors[m];
|
|
vp.push_back((cos(M_PI / group.get(p, m)) - dot(m, vp, vq)) / vq[m]);
|
|
}
|
|
vp.push_back(std::sqrt(1 - dot(p, vp, vp)));
|
|
|
|
for (const auto &v : mirrors) {
|
|
if (dot(p, vp, vp) > 0) {
|
|
for (auto &e : vp) {
|
|
e *= -1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
mirrors.push_back(vp);
|
|
}
|
|
|
|
std::vector<vec<N>> res;
|
|
for (const auto &v : mirrors) {
|
|
vec<N> rv{};
|
|
|
|
// ortho proj
|
|
for (int i = 0; i < std::min(v.size(), (size_t) N); ++i) {
|
|
rv[i] = v[i];
|
|
}
|
|
|
|
res.push_back(rv);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
template<unsigned N>
|
|
vec<N> stereo(vec<N + 1> v) {
|
|
vec<N> r;
|
|
for (int i = 0; i < N; ++i) {
|
|
r[i] = v[i] / (1-v[N]);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
template<class V>
|
|
V project(const V &vec, const V &target) {
|
|
return dot(vec, target) / dot(target, target) * target;
|
|
}
|
|
|
|
template<class V>
|
|
V reflect(const V &a, const V &axis) {
|
|
return a - 2.f * project(a, axis);
|
|
}
|
|
|
|
template<class V>
|
|
V gram_schmidt_last(std::vector<V> vecs) {
|
|
int N = vecs.size();
|
|
for (int i = 0; i < N; ++i) {
|
|
for (int j = 0; j < i; ++j) {
|
|
vecs[i] -= project(vecs[i], vecs[j]);
|
|
}
|
|
}
|
|
|
|
return normalized(vecs[N - 1]);
|
|
}
|
|
|
|
template<class V>
|
|
V barycentric(std::vector<V> basis, std::vector<float> coords) {
|
|
V res{};
|
|
|
|
int N = std::min(basis.size(), coords.size());
|
|
for (int i = 0; i < N; ++i) {
|
|
res = res + (basis[i] * coords[i]);
|
|
}
|
|
return normalized(res);
|
|
}
|
|
|
|
template<class V>
|
|
std::vector<V> plane_intersections(std::vector<V> normals) {
|
|
int N = normals.size();
|
|
std::vector<V> results(N);
|
|
|
|
for (int i = 0; i < N; ++i) {
|
|
std::rotate(normals.begin(), normals.begin() + 1, normals.end());
|
|
results[i] = gram_schmidt_last(normals);
|
|
}
|
|
|
|
return results;
|
|
}
|
|
|
|
glm::mat4 utilRotate(const int u, const int v, const float theta) {
|
|
auto res = glm::identity<glm::mat4>();
|
|
res[u][u] = std::cos(theta);
|
|
res[u][v] = std::sin(theta);
|
|
res[v][u] = -std::sin(theta);
|
|
res[v][v] = std::cos(theta);
|
|
return res;
|
|
} |