Files
toddcox-visualize/vis/include/mirror.hpp

194 lines
4.0 KiB
C++

#pragma once
#include <tc/core.hpp>
#include <cmath>
#include <vector>
#include <algorithm>
template<unsigned N>
using vec = std::array<float, N>;
using vec1 = vec<1>;
using vec2 = vec<2>;
using vec3 = vec<3>;
using vec4 = vec<4>;
using vec5 = vec<5>;
template<class V>
V operator*(V a, const float &b) {
for (auto &e : a) e *= b;
return a;
}
template<class V>
V operator*(const float &b, V a) {
for (auto &e : a) e *= b;
return a;
}
template<class V>
V operator/(V a, const float &b) {
for (auto &e : a) e /= b;
return a;
}
template<class V>
V operator+(const V &a, V b) {
for (int i = 0; i < a.size(); ++i) {
a[i] += b[i];
}
return a;
}
template<class V>
V operator-(V a, const V &b) {
for (int i = 0; i < a.size(); ++i) {
a[i] -= b[i];
}
return a;
}
template<class V>
void operator-=(V &a, const V &b) {
for (int i = 0; i < a.size(); ++i) {
a[i] -= b[i];
}
}
template<class V>
void operator+=(V &a, const V &b) {
for (int i = 0; i < a.size(); ++i) {
a[i] += b[i];
}
}
template<class V>
float length(const V &a) {
float sum = 0;
for (const auto &e : a) sum += e * e;
return sqrtf(sum);
}
template<class V>
V normalized(const V &a) {
return a / length(a);
}
template<class V>
float dot(int n, const V &a, const V &b) {
float sum = 0;
for (int i = 0; i < n; ++i) {
sum += a[i] * b[i];
}
return sum;
}
template<class V>
float dot(const V &a, const V &b) {
float sum = 0;
for (int i = 0; i < a.size(); ++i) {
sum += a[i] * b[i];
}
return sum;
}
template<unsigned N>
std::vector<vec<N>> mirror(const tc::Group &group) {
std::vector<std::vector<float>> mirrors;
for (int p = 0; p < group.ngens; ++p) {
std::vector<float> vp;
for (int m = 0; m < p; ++m) {
auto &vq = mirrors[m];
vp.push_back((cos(M_PI / group.get(p, m)) - dot(m, vp, vq)) / vq[m]);
}
vp.push_back(std::sqrt(1 - dot(p, vp, vp)));
for (const auto &v : mirrors) {
if (dot(p, vp, vp) > 0) {
for (auto &e : vp) {
e *= -1;
}
break;
}
}
mirrors.push_back(vp);
}
std::vector<vec<N>> res;
for (const auto &v : mirrors) {
vec<N> rv{};
// ortho proj
for (int i = 0; i < std::min(v.size(), (size_t) N); ++i) {
rv[i] = v[i];
}
res.push_back(rv);
}
return res;
}
template<unsigned N>
vec<N> stereo(const vec<N + 1> &v) {
vec<N> r;
for (int i = 0; i < N; ++i) {
r[i] = v[i] / (1 - v[N]);
}
return r;
}
template<class V>
V project(const V &vec, const V &target) {
return dot(vec, target) / dot(target, target) * target;
}
template<class V>
V reflect(const V &a, const V &axis) {
return a - 2.f * project(a, axis);
}
template<class V>
V gram_schmidt_last(std::vector<V> vecs) {
for (int i = 0; i < vecs.size(); ++i) {
for (int j = 0; j < i; ++j) {
vecs[i] -= project(vecs[i], vecs[j]);
}
}
return normalized(vecs[vecs.size() - 1]);
}
template<class V>
V barycentric(const std::vector<V> &basis, const std::vector<float> &coords) {
V res{};
int N = std::min(basis.size(), coords.size());
for (int i = 0; i < N; ++i) {
res += basis[i] * coords[i];
}
return normalized(res);
}
template<class V>
std::vector<V> plane_intersections(std::vector<V> normals) {
std::vector<V> results(normals.size());
for (int i = 0; i < normals.size(); ++i) {
std::rotate(normals.begin(), normals.begin() + 1, normals.end());
results[i] = gram_schmidt_last(normals);
}
return results;
}
glm::mat4 utilRotate(const int u, const int v, const float theta) {
auto res = glm::identity<glm::mat4>();
res[u][u] = std::cos(theta);
res[u][v] = std::sin(theta);
res[v][u] = -std::sin(theta);
res[v][v] = std::cos(theta);
return res;
}