Files
vulkan-zig/generator/vulkan/build_integration.zig
praschke 2a796113e8 Update for zig build changes
- Step now holds the builder and some manifest/cache helpers
- cleaned up proxy names and remaining uses of `std.build`
- removed vicious lie from README
2023-03-18 12:26:59 +00:00

135 lines
5.9 KiB
Zig

const std = @import("std");
const generator = @import("generator.zig");
const Build = std.Build;
/// build.zig integration for Vulkan binding generation. This step can be used to generate
/// Vulkan bindings at compiletime from vk.xml, by providing the path to vk.xml and the output
/// path relative to zig-cache. The final package can then be obtained by `package()`, the result
/// of which can be added to the project using `std.Build.addModule`.
pub const GenerateStep = struct {
step: Build.Step,
generated_file: Build.GeneratedFile,
/// The path to vk.xml
spec_path: []const u8,
/// The API to generate for.
/// Defaults to Vulkan.
// Note: VulkanSC is experimental.
api: generator.Api = .vulkan,
/// Initialize a Vulkan generation step, for `builder`. `spec_path` is the path to
/// vk.xml, relative to the project root. The generated bindings will be placed at
/// `out_path`, which is relative to the zig-cache directory.
pub fn create(builder: *Build, spec_path: []const u8) *GenerateStep {
const self = builder.allocator.create(GenerateStep) catch unreachable;
self.* = .{
.step = Build.Step.init(.{
.id = .custom,
.name = "vulkan-generate",
.owner = builder,
.makeFn = make,
}),
.generated_file = .{
.step = &self.step,
},
.spec_path = spec_path,
};
return self;
}
/// Initialize a Vulkan generation step for `builder`, by extracting vk.xml from the LunarG installation
/// root. Typically, the location of the LunarG SDK root can be retrieved by querying for the VULKAN_SDK
/// environment variable, set by activating the environment setup script located in the SDK root.
/// `builder` and `out_path` are used in the same manner as `init`.
pub fn createFromSdk(builder: *Build, sdk_path: []const u8, output_name: []const u8) *GenerateStep {
const spec_path = std.fs.path.join(
builder.allocator,
&[_][]const u8{ sdk_path, "share/vulkan/registry/vk.xml" },
) catch unreachable;
return create(builder, spec_path, output_name);
}
/// Set the API to generate for.
pub fn setApi(self: *GenerateStep, api_to_generate: generator.Api) void {
self.api = api_to_generate;
}
/// Returns the module with the generated budings, with name `module_name`.
pub fn getModule(self: *GenerateStep) *Build.Module {
return self.step.owner.createModule(.{
.source_file = self.getSource(),
});
}
/// Returns the file source for the generated bindings.
pub fn getSource(self: *GenerateStep) Build.FileSource {
return .{ .generated = &self.generated_file };
}
/// Internal build function. This reads `vk.xml`, and passes it to `generate`, which then generates
/// the final bindings. The resulting generated bindings are not formatted, which is why an ArrayList
/// writer is passed instead of a file writer. This is then formatted into standard formatting
/// by parsing it and rendering with `std.zig.parse` and `std.zig.render` respectively.
fn make(step: *Build.Step, progress: *std.Progress.Node) !void {
_ = progress;
const b = step.owner;
const self = @fieldParentPtr(GenerateStep, "step", step);
const cwd = std.fs.cwd();
var man = b.cache.obtain();
defer man.deinit();
const spec = try cwd.readFileAlloc(b.allocator, self.spec_path, std.math.maxInt(usize));
// TODO: Look into whether this is the right way to be doing
// this - maybe the file-level caching API has some benefits I
// don't understand.
man.hash.addBytes(spec);
const already_exists = try step.cacheHit(&man);
const digest = man.final();
const output_file_path = try b.cache_root.join(b.allocator, &.{ "o", &digest, "vk.zig" });
if (already_exists) {
self.generated_file.path = output_file_path;
return;
}
var out_buffer = std.ArrayList(u8).init(b.allocator);
generator.generate(b.allocator, self.api, spec, out_buffer.writer()) catch |err| switch (err) {
error.InvalidXml => {
std.log.err("invalid vulkan registry - invalid xml", .{});
std.log.err("please check that the correct vk.xml file is passed", .{});
return err;
},
error.InvalidRegistry => {
std.log.err("invalid vulkan registry - registry is valid xml but contents are invalid", .{});
std.log.err("please check that the correct vk.xml file is passed", .{});
return err;
},
error.UnhandledBitfieldStruct => {
std.log.err("unhandled struct with bit fields detected in vk.xml", .{});
std.log.err("this is a bug in vulkan-zig", .{});
std.log.err("please make a bug report at https://github.com/Snektron/vulkan-zig/issues/", .{});
return err;
},
error.OutOfMemory => return error.OutOfMemory,
};
try out_buffer.append(0);
const src = out_buffer.items[0 .. out_buffer.items.len - 1 :0];
const tree = try std.zig.Ast.parse(b.allocator, src, .zig);
std.debug.assert(tree.errors.len == 0); // If this triggers, vulkan-zig produced invalid code.
const formatted = try tree.render(b.allocator);
const output_dir_path = std.fs.path.dirname(output_file_path).?;
cwd.makePath(output_dir_path) catch |err| {
std.debug.print("unable to make path {s}: {s}\n", .{ output_dir_path, @errorName(err) });
return err;
};
try cwd.writeFile(output_file_path, formatted);
self.generated_file.path = output_file_path;
try step.writeManifest(&man);
}
};