Files
vulkan-zig/examples/graphics_context.zig

292 lines
9.8 KiB
Zig

const std = @import("std");
const vk = @import("vulkan");
const c = @import("c.zig");
const Allocator = std.mem.Allocator;
const required_device_extensions = [_][*:0]const u8{vk.extensions.khr_swapchain.name};
/// There are 3 levels of bindings in vulkan-zig:
/// - The Dispatch types (vk.BaseDispatch, vk.InstanceDispatch, vk.DeviceDispatch)
/// are "plain" structs which just contain the function pointers for a particular
/// object.
/// - The Wrapper types (vk.Basewrapper, vk.InstanceWrapper, vk.DeviceWrapper) contains
/// the Dispatch type, as well as Ziggified Vulkan functions - these return Zig errors,
/// etc.
/// - The Proxy types (vk.InstanceProxy, vk.DeviceProxy, vk.CommandBufferProxy,
/// vk.QueueProxy) contain a pointer to a Wrapper and also contain the object's handle.
/// Calling Ziggified functions on these types automatically passes the handle as
/// the first parameter of each function. Note that this type accepts a pointer to
/// a wrapper struct as there is a problem with LLVM where embedding function pointers
/// and object pointer in the same struct leads to missed optimizations. If the wrapper
/// member is a pointer, LLVM will try to optimize it as any other vtable.
/// The wrappers contain
const BaseWrapper = vk.BaseWrapper;
const InstanceWrapper = vk.InstanceWrapper;
const DeviceWrapper = vk.DeviceWrapper;
const Instance = vk.InstanceProxy;
const Device = vk.DeviceProxy;
pub const GraphicsContext = struct {
pub const CommandBuffer = vk.CommandBufferProxy;
allocator: Allocator,
vkb: BaseWrapper,
instance: Instance,
surface: vk.SurfaceKHR,
pdev: vk.PhysicalDevice,
props: vk.PhysicalDeviceProperties,
mem_props: vk.PhysicalDeviceMemoryProperties,
dev: Device,
graphics_queue: Queue,
present_queue: Queue,
pub fn init(allocator: Allocator, app_name: [*:0]const u8, window: *c.GLFWwindow) !GraphicsContext {
var self: GraphicsContext = undefined;
self.allocator = allocator;
self.vkb = BaseWrapper.load(c.glfwGetInstanceProcAddress);
var glfw_exts_count: u32 = 0;
const glfw_exts = c.glfwGetRequiredInstanceExtensions(&glfw_exts_count);
const app_info = vk.ApplicationInfo{
.p_application_name = app_name,
.application_version = @bitCast(vk.makeApiVersion(0, 0, 0, 0)),
.p_engine_name = app_name,
.engine_version = @bitCast(vk.makeApiVersion(0, 0, 0, 0)),
.api_version = @bitCast(vk.API_VERSION_1_2),
};
const instance = try self.vkb.createInstance(&.{
.p_application_info = &app_info,
.enabled_extension_count = glfw_exts_count,
.pp_enabled_extension_names = @ptrCast(glfw_exts),
}, null);
const vki = try allocator.create(InstanceWrapper);
errdefer allocator.destroy(vki);
vki.* = InstanceWrapper.load(instance, self.vkb.dispatch.vkGetInstanceProcAddr.?);
self.instance = Instance.init(instance, vki);
errdefer self.instance.destroyInstance(null);
self.surface = try createSurface(self.instance, window);
errdefer self.instance.destroySurfaceKHR(self.surface, null);
const candidate = try pickPhysicalDevice(self.instance, allocator, self.surface);
self.pdev = candidate.pdev;
self.props = candidate.props;
const dev = try initializeCandidate(self.instance, candidate);
const vkd = try allocator.create(DeviceWrapper);
errdefer allocator.destroy(vkd);
vkd.* = DeviceWrapper.load(dev, self.instance.wrapper.dispatch.vkGetDeviceProcAddr.?);
self.dev = Device.init(dev, vkd);
errdefer self.dev.destroyDevice(null);
self.graphics_queue = Queue.init(self.dev, candidate.queues.graphics_family);
self.present_queue = Queue.init(self.dev, candidate.queues.present_family);
self.mem_props = self.instance.getPhysicalDeviceMemoryProperties(self.pdev);
return self;
}
pub fn deinit(self: GraphicsContext) void {
self.dev.destroyDevice(null);
self.instance.destroySurfaceKHR(self.surface, null);
self.instance.destroyInstance(null);
// Don't forget to free the tables to prevent a memory leak.
self.allocator.destroy(self.dev.wrapper);
self.allocator.destroy(self.instance.wrapper);
}
pub fn deviceName(self: *const GraphicsContext) []const u8 {
return std.mem.sliceTo(&self.props.device_name, 0);
}
pub fn findMemoryTypeIndex(self: GraphicsContext, memory_type_bits: u32, flags: vk.MemoryPropertyFlags) !u32 {
for (self.mem_props.memory_types[0..self.mem_props.memory_type_count], 0..) |mem_type, i| {
if (memory_type_bits & (@as(u32, 1) << @truncate(i)) != 0 and mem_type.property_flags.contains(flags)) {
return @truncate(i);
}
}
return error.NoSuitableMemoryType;
}
pub fn allocate(self: GraphicsContext, requirements: vk.MemoryRequirements, flags: vk.MemoryPropertyFlags) !vk.DeviceMemory {
return try self.dev.allocateMemory(&.{
.allocation_size = requirements.size,
.memory_type_index = try self.findMemoryTypeIndex(requirements.memory_type_bits, flags),
}, null);
}
};
pub const Queue = struct {
handle: vk.Queue,
family: u32,
fn init(device: Device, family: u32) Queue {
return .{
.handle = device.getDeviceQueue(family, 0),
.family = family,
};
}
};
fn createSurface(instance: Instance, window: *c.GLFWwindow) !vk.SurfaceKHR {
var surface: vk.SurfaceKHR = undefined;
if (c.glfwCreateWindowSurface(instance.handle, window, null, &surface) != .success) {
return error.SurfaceInitFailed;
}
return surface;
}
fn initializeCandidate(instance: Instance, candidate: DeviceCandidate) !vk.Device {
const priority = [_]f32{1};
const qci = [_]vk.DeviceQueueCreateInfo{
.{
.queue_family_index = candidate.queues.graphics_family,
.queue_count = 1,
.p_queue_priorities = &priority,
},
.{
.queue_family_index = candidate.queues.present_family,
.queue_count = 1,
.p_queue_priorities = &priority,
},
};
const queue_count: u32 = if (candidate.queues.graphics_family == candidate.queues.present_family)
1
else
2;
return try instance.createDevice(candidate.pdev, &.{
.queue_create_info_count = queue_count,
.p_queue_create_infos = &qci,
.enabled_extension_count = required_device_extensions.len,
.pp_enabled_extension_names = @ptrCast(&required_device_extensions),
}, null);
}
const DeviceCandidate = struct {
pdev: vk.PhysicalDevice,
props: vk.PhysicalDeviceProperties,
queues: QueueAllocation,
};
const QueueAllocation = struct {
graphics_family: u32,
present_family: u32,
};
fn pickPhysicalDevice(
instance: Instance,
allocator: Allocator,
surface: vk.SurfaceKHR,
) !DeviceCandidate {
const pdevs = try instance.enumeratePhysicalDevicesAlloc(allocator);
defer allocator.free(pdevs);
for (pdevs) |pdev| {
if (try checkSuitable(instance, pdev, allocator, surface)) |candidate| {
return candidate;
}
}
return error.NoSuitableDevice;
}
fn checkSuitable(
instance: Instance,
pdev: vk.PhysicalDevice,
allocator: Allocator,
surface: vk.SurfaceKHR,
) !?DeviceCandidate {
if (!try checkExtensionSupport(instance, pdev, allocator)) {
return null;
}
if (!try checkSurfaceSupport(instance, pdev, surface)) {
return null;
}
if (try allocateQueues(instance, pdev, allocator, surface)) |allocation| {
const props = instance.getPhysicalDeviceProperties(pdev);
return DeviceCandidate{
.pdev = pdev,
.props = props,
.queues = allocation,
};
}
return null;
}
fn allocateQueues(instance: Instance, pdev: vk.PhysicalDevice, allocator: Allocator, surface: vk.SurfaceKHR) !?QueueAllocation {
const families = try instance.getPhysicalDeviceQueueFamilyPropertiesAlloc(pdev, allocator);
defer allocator.free(families);
var graphics_family: ?u32 = null;
var present_family: ?u32 = null;
for (families, 0..) |properties, i| {
const family: u32 = @intCast(i);
if (graphics_family == null and properties.queue_flags.graphics_bit) {
graphics_family = family;
}
if (present_family == null and (try instance.getPhysicalDeviceSurfaceSupportKHR(pdev, family, surface)) == vk.TRUE) {
present_family = family;
}
}
if (graphics_family != null and present_family != null) {
return QueueAllocation{
.graphics_family = graphics_family.?,
.present_family = present_family.?,
};
}
return null;
}
fn checkSurfaceSupport(instance: Instance, pdev: vk.PhysicalDevice, surface: vk.SurfaceKHR) !bool {
var format_count: u32 = undefined;
_ = try instance.getPhysicalDeviceSurfaceFormatsKHR(pdev, surface, &format_count, null);
var present_mode_count: u32 = undefined;
_ = try instance.getPhysicalDeviceSurfacePresentModesKHR(pdev, surface, &present_mode_count, null);
return format_count > 0 and present_mode_count > 0;
}
fn checkExtensionSupport(
instance: Instance,
pdev: vk.PhysicalDevice,
allocator: Allocator,
) !bool {
const propsv = try instance.enumerateDeviceExtensionPropertiesAlloc(pdev, null, allocator);
defer allocator.free(propsv);
for (required_device_extensions) |ext| {
for (propsv) |props| {
if (std.mem.eql(u8, std.mem.span(ext), std.mem.sliceTo(&props.extension_name, 0))) {
break;
}
} else {
return false;
}
}
return true;
}