Files
vulkan-zig/generator/registry.zig
2020-01-23 17:43:28 +01:00

784 lines
28 KiB
Zig

const std = @import("std");
const xml = @import("xml.zig");
const mem = std.mem;
const Allocator = mem.Allocator;
const SegmentedList = std.SegmentedList;
const StringHashMap = std.StringHashMap;
fn count(haystack: []const u8, needle: u8) usize {
var total: usize = 0;
for (haystack) |elem| {
if (elem == needle) {
total += 1;
}
}
return total;
}
pub const Registry = struct {
arena: std.heap.ArenaAllocator,
enums: StringHashMap(EnumInfo),
bitmasks: StringHashMap(BitmaskInfo),
handles: StringHashMap(HandleInfo),
structs: StringHashMap(StructInfo),
commands: StringHashMap(CommandInfo),
fn_ptrs: StringHashMap(CommandInfo),
extensions: SegmentedList(ExtensionInfo, 0),
fn init(allocator: *Allocator) !*Registry {
// Use this construction to make sure that the extensions list contains a valid pointer to an allocator
const registry = blk: {
var arena = std.heap.ArenaAllocator.init(allocator);
errdefer arena.deinit();
const registry = try arena.allocator.create(Registry);
registry.* = .{
.arena = arena,
.enums = StringHashMap(EnumInfo).init(allocator),
.bitmasks = StringHashMap(BitmaskInfo).init(allocator),
.handles = StringHashMap(HandleInfo).init(allocator),
.structs = StringHashMap(StructInfo).init(allocator),
.commands = StringHashMap(CommandInfo).init(allocator),
.fn_ptrs = StringHashMap(CommandInfo).init(allocator),
.extensions = undefined
};
break :blk registry;
};
registry.extensions = SegmentedList(ExtensionInfo, 0).init(&registry.arena.allocator);
return registry;
}
fn deinit(self: *Registry) void {
self.enums.deinit();
self.bitmasks.deinit();
self.handles.deinit();
self.structs.deinit();
self.commands.deinit();
self.fn_ptrs.deinit();
// Copy to stack so that the arena doesn't destroy itself
var arena = self.arena;
arena.deinit();
}
fn dump(self: *Registry) void {
{
std.debug.warn("Enums:\n", .{});
var it = self.enums.iterator();
while (it.next()) |e| {
const kind_text = if (e.value.kind == .Bitmask) " (bitmask)" else "";
std.debug.warn(" {}{}:\n", .{ e.key, kind_text });
var variant_it = e.value.variants.iterator(0);
while (variant_it.next()) |variant| {
std.debug.warn(" {}\n", .{variant.name});
}
}
}
{
std.debug.warn("Bitmasks:\n", .{});
var it = self.bitmasks.iterator();
while (it.next()) |b| {
std.debug.warn(" {}", .{b.key});
switch (b.value) {
.None => std.debug.warn("\n", .{}),
.Bits => |bits| std.debug.warn(" [bits: {}]\n", .{bits}),
.Alias => |alias| std.debug.warn(" [alias of: {}]\n", .{alias}),
}
}
}
{
std.debug.warn("Handles:\n", .{});
var it = self.handles.iterator();
while (it.next()) |kv| {
std.debug.warn(" {}", .{kv.key});
switch (kv.value) {
.Alias => |alias| std.debug.warn(" (alias of {})\n", .{alias}),
.NonDispatchable => std.debug.warn(" (non-dispatchable)\n", .{}),
else => std.debug.warn("\n", .{}),
}
}
}
{
std.debug.warn("Structs:\n", .{});
var it = self.structs.iterator();
while (it.next()) |kv| {
std.debug.warn(" {} ({} aliases):\n", .{kv.key, kv.value.aliases.count()});
var member_it = kv.value.members.iterator(0);
while (member_it.next()) |member| {
std.debug.warn(" {} = {}\n", .{member.name, member.type_info});
}
}
}
{
std.debug.warn("Commands:\n", .{});
var it = self.commands.iterator();
while (it.next()) |kv| {
std.debug.warn(" fn {}(\n", .{kv.key});
var param_it = kv.value.parameters.iterator(0);
while (param_it.next()) |param| {
std.debug.warn(" {}: {},\n", .{param.name, param.type_info});
}
std.debug.warn(" ) {}\n", .{kv.value.return_type_info});
if (kv.value.success_codes.len > 0) {
std.debug.warn(" Success codes:\n", .{});
for (kv.value.success_codes) |code| {
std.debug.warn(" {}\n", .{code});
}
}
if (kv.value.error_codes.len > 0) {
std.debug.warn(" Error codes:\n", .{});
for (kv.value.error_codes) |code| {
std.debug.warn(" {}\n", .{code});
}
}
}
}
{
std.debug.warn("Function pointers:\n", .{});
var it = self.fn_ptrs.iterator();
while (it.next()) |kv| {
std.debug.warn(" {} = fn(\n", .{kv.key});
var param_it = kv.value.parameters.iterator(0);
while (param_it.next()) |param| {
std.debug.warn(" {}: {},\n", .{param.name, param.type_info});
}
std.debug.warn(" ) {}\n", .{kv.value.return_type_info});
}
}
{
std.debug.warn("Extensions:\n", .{});
var it = self.extensions.iterator(0);
while (it.next()) |ext| {
std.debug.warn(" {}: {}, version {}\n", .{ext.number, ext.name, ext.version});
}
}
}
};
// Type info of fields, function parameters, and return types.
const TypeInfo = struct {
const PointerSize = enum {
One,
Many, // The length is either given by some expression
ZeroTerminated
};
const Pointer = struct {
is_const: bool,
size: PointerSize
};
name: []const u8,
pointers: []Pointer, // Outer-most pointer is the first element
array_size: ?[]const u8,
fn fromXml(allocator: *Allocator, elem: *xml.Element) TypeInfo {
var type_info = TypeInfo{
.name = elem.getCharData("type").?,
.pointers = &[_]Pointer{},
.array_size = elem.getCharData("enum")
};
// Find the element which contains the stars of the pointers
var stars: ?[]const u8 = null;
var child_it = elem.children.iterator(0);
while (child_it.next()) |child| {
if (child.* == .CharData and mem.indexOfScalar(u8, child.CharData, '*') != null) {
stars = child.CharData;
break;
}
}
if (stars) |ptr_text| {
const npointers = count(ptr_text, '*');
type_info.pointers = allocator.alloc(TypeInfo.Pointer, npointers) catch unreachable;
// Read the sizes of each pointer
if (elem.getAttribute("len")) |lens| {
var len_it = std.mem.separate(lens, ",");
for (type_info.pointers) |*ptr, i| {
ptr.size = if (len_it.next()) |len| lenToPointerSize(len) else .One;
}
} else {
for (type_info.pointers) |*ptr| {
ptr.size = .One;
}
}
// Read the constness of each pointer
// Beware: the const of the inner pointer is given before the type name
// while the others are in the `ptr_text`.
const pre = switch (elem.children.at(0).*) {
.CharData => |char_data| char_data,
else => ""
};
type_info.parseConstness(pre, ptr_text);
}
return type_info;
}
fn fromFnPtrReturnTypeXml(allocator: *Allocator, elem: *xml.Element) TypeInfo {
// In function pointers, the return type is not contained within a designated tag.
// The first chardata of the type has the following structure: 'typedef <return type> (VKAPI_PTR *'
// In order to parse the <return type>, strip everything from it until the last star and take the last word
// to be the type. Then parse everything in front of the return type word and after the return type word
const proto = elem.children.at(0).CharData;
std.debug.assert(mem.startsWith(u8, proto, "typedef ") and mem.endsWith(u8, proto, " (VKAPI_PTR *"));
const return_type = proto["typedef ".len .. proto.len - " (VKAPI_PTR *".len];
var first_star = return_type.len;
var npointers: usize = 0;
var i = return_type.len;
while (i > 0) {
i -= 1;
if (return_type[i] == '*') {
first_star = i;
npointers += 1;
}
}
const name_start = if (mem.lastIndexOfScalar(u8, return_type[0 .. first_star], ' ')) |index| index + 1 else 0;
var type_info = TypeInfo{
.name = return_type[name_start .. first_star],
.pointers = &[_]Pointer{},
.array_size = null
};
if (npointers > 0) {
type_info.pointers = allocator.alloc(TypeInfo.Pointer, npointers) catch unreachable;
for (type_info.pointers) |*ptr| {
ptr.size = .One;
}
type_info.parseConstness(return_type[0 .. name_start], return_type[first_star ..]);
}
return type_info;
}
fn fromFnPtrParamTypeXml(allocator: *Allocator, pre: []const u8, name: []const u8, post: []const u8) TypeInfo {
// `pre` and `post` contain information that is shared with other types, seperated by commas. In
// the case of `pre`, get everything after the comma (if present), and for `post`, everything before
// and including the last star before the last. If there is no star, the segment contains no
// useful information anyway. Note that the star should never appear *after* the comma (that wouldn't be
// a valid C type).
// Ex: <type>void</type>* pUserData, <type>void</type>* pMemory
const pre_start = if (mem.indexOfScalar(u8, pre, ',')) |index| index + 1 else pre.len;
const post_end = if (mem.indexOfScalar(u8, post, '*')) |index| index + 1 else 0;
const npointers = count(post[0 .. post_end], '*');
var type_info = TypeInfo{
.name = name,
.pointers = &[_]Pointer{},
.array_size = null
};
if (npointers > 0) {
type_info.pointers = allocator.alloc(TypeInfo.Pointer, npointers) catch unreachable;
for (type_info.pointers) |*ptr| {
ptr.size = .One;
}
type_info.parseConstness(pre[pre_start ..], post[0 .. post_end]);
}
return type_info;
}
fn parseConstness(self: *TypeInfo, pre: []const u8, post: []const u8) void {
// Beware: the const of the inner pointer is given before the type name (in `pre`)
// while the others are in the `post`.
// Check the outer pointers
var const_it = std.mem.separate(post, "*");
var i: usize = self.pointers.len;
while (i > 0) {
i -= 1;
const is_const = mem.indexOf(u8, const_it.next().?, "const") != null;
self.pointers[i].is_const = is_const;
}
// Check the inner-most pointer
const first_const = mem.indexOf(u8, pre, "const") != null;
self.pointers[self.pointers.len - 1].is_const = first_const;
}
pub fn format(
self: TypeInfo,
comptime fmt: []const u8,
options: std.fmt.FormatOptions,
context: var,
comptime Errors: type,
output: fn (@TypeOf(context), []const u8) Errors!void
) Errors!void {
if (self.array_size) |array_size| {
try std.fmt.format(context, Errors, output, "[{}]", .{array_size});
}
for (self.pointers) |ptr| {
switch (ptr.size) {
.One => try output(context, "*"),
.Many => try output(context, "[*]"),
.ZeroTerminated => try output(context, "[*:0]")
}
if (ptr.is_const) {
try output(context, "const ");
}
}
try output(context, self.name);
}
fn lenToPointerSize(len: []const u8) PointerSize {
if (mem.eql(u8, len, "null-terminated")) {
return .ZeroTerminated;
} else if (mem.eql(u8, len, "1")) {
return .One;
} else {
return .Many;
}
}
};
const StructInfo = struct {
const Member = struct {
name: []const u8,
type_info: TypeInfo
};
members: SegmentedList(Member, 0),
aliases: SegmentedList([]const u8, 0),
fn init(allocator: *Allocator) StructInfo {
return .{
.members = SegmentedList(Member, 0).init(allocator),
.aliases = SegmentedList([]const u8, 0).init(allocator)
};
}
fn fromXml(allocator: *Allocator, elem: *xml.Element) StructInfo {
var s = StructInfo.init(allocator);
var members = elem.findChildrenByTag("member");
while (members.next()) |member| {
const member_name = member.getCharData("name").?;
const type_info = TypeInfo.fromXml(allocator, member);
s.addMember(member_name, type_info);
}
return s;
}
fn addMember(self: *StructInfo, name: []const u8, type_info: TypeInfo) void {
self.members.push(.{.name = name, .type_info = type_info}) catch unreachable;
}
fn addAlias(self: *StructInfo, alias: []const u8) void {
self.aliases.push(alias) catch unreachable;
}
};
const CommandInfo = struct {
const Parameter = struct {
name: []const u8,
type_info: TypeInfo
};
parameters: SegmentedList(Parameter, 0),
return_type_info: TypeInfo,
success_codes: []const []const u8,
error_codes: []const []const u8,
aliases: SegmentedList([]const u8, 0),
fn init(allocator: *Allocator, return_type_info: TypeInfo) CommandInfo {
return .{
.parameters = SegmentedList(Parameter, 0).init(allocator),
.return_type_info = return_type_info,
.success_codes = &[_][]u8{},
.error_codes = &[_][]u8{},
.aliases = SegmentedList([]const u8, 0).init(allocator)
};
}
fn fromXml(allocator: *Allocator, elem: *xml.Element) CommandInfo {
const return_type_info = TypeInfo.fromXml(allocator, elem.findChildByTag("proto").?);
var cmd = CommandInfo.init(allocator, return_type_info);
if (elem.getAttribute("successcodes")) |codes| {
cmd.success_codes = CommandInfo.splitResultCodes(allocator, codes);
}
if (elem.getAttribute("errorcodes")) |codes| {
cmd.error_codes = CommandInfo.splitResultCodes(allocator, codes);
}
var parameters = elem.findChildrenByTag("param");
while (parameters.next()) |param| {
const param_name = param.getCharData("name").?;
const type_info = TypeInfo.fromXml(allocator, param);
cmd.addParameter(param_name, type_info);
}
return cmd;
}
fn fromFnPtrXml(allocator: *Allocator, elem: *xml.Element) CommandInfo {
const return_type_info = TypeInfo.fromFnPtrReturnTypeXml(allocator, elem);
var cmd = CommandInfo.init(allocator, return_type_info);
// The parameters of a function pointer are formulated a bit weird, which is why
// the chardata surrounding a <type> is also required to parse it completely.
// This loop assumes there are no other elements in a function pointers declatation.
var i: usize = 3; // The first parameter's type is at offset 3
while (i < elem.children.count() - 1) : (i += 2) {
const pre = elem.children.at(i - 1).CharData;
const type_name = elem.children.at(i).Element.children.at(0).CharData;
const post = elem.children.at(i + 1).CharData;
const type_info = TypeInfo.fromFnPtrParamTypeXml(allocator, pre, type_name, post);
// To find the type name, take everything until the first space before the last ) or ,.
const name_end = mem.lastIndexOfAny(u8, post, "),").?;
const name_start = mem.lastIndexOfScalar(u8, post[0 .. name_end], ' ').? + 1;
const name = post[name_start .. name_end];
cmd.addParameter(name, type_info);
}
return cmd;
}
fn splitResultCodes(allocator: *Allocator, text: []const u8) []const []const u8 {
const ncodes = 1 + count(text, ',');
const codes = allocator.alloc([]const u8, ncodes) catch unreachable;
var it = mem.separate(text, ",");
for (codes) |*code, i| {
code.* = it.next().?;
}
return codes;
}
fn addParameter(self: *CommandInfo, name: []const u8, type_info: TypeInfo) void {
self.parameters.push(.{.name = name, .type_info = type_info}) catch unreachable;
}
fn addAlias(self: *CommandInfo, alias: []const u8) void {
self.aliases.push(alias) catch unreachable;
}
};
const HandleInfo = union(enum) {
Dispatchable,
NonDispatchable,
Alias: []const u8
};
const BitmaskInfo = union(enum) {
None,
Bits: []const u8,
Alias: []const u8
};
const ExtensionInfo = struct {
name: []const u8,
number: u32,
version: u32,
};
const EnumInfo = struct {
const Kind = enum {
Bitmask,
EnumInfo,
fn parse(str: []const u8) !Kind {
if (mem.eql(u8, str, "bitmask")) {
return .Bitmask;
} else if (mem.eql(u8, str, "enum")) {
return .EnumInfo;
} else {
return error.InvalidEnumInfoKind;
}
}
};
const Value = union(enum) {
Bitpos: u5, //log2(u32.bit_count)
Value: i32,
Alias: []const u8,
};
const Variant = struct {
name: []const u8,
value: Value
};
kind: Kind,
variants: SegmentedList(Variant, 0),
fn init(allocator: *Allocator, kind: Kind) EnumInfo {
return .{
.kind = kind,
.variants = SegmentedList(Variant, 0).init(allocator)
};
}
fn fromXml(allocator: *Allocator, enums: *xml.Element) EnumInfo {
const kind = EnumInfo.Kind.parse(enums.getAttribute("type").?) catch unreachable;
var e = EnumInfo.init(allocator, kind);
var it = enums.findChildrenByTag("enum");
while (it.next()) |variant| {
e.processVariantFromXml(variant, null);
}
return e;
}
fn addVariant(self: *EnumInfo, name: []const u8, value: Value) void {
const ptr = self.variants.push(.{.name = name, .value = value}) catch unreachable;
}
fn processVariantFromXml(self: *EnumInfo, variant: *xml.Element, ext_nr: ?u32) void {
if (EnumInfo.isBackwardsCompatAlias(variant)) return;
const name = variant.getAttribute("name").?;
const value = blk: {
if (variant.getAttribute("value")) |value_str| {
const value = if (mem.startsWith(u8, value_str, "0x"))
std.fmt.parseInt(i32, value_str[2..], 16) catch unreachable
else
std.fmt.parseInt(i32, value_str, 10) catch unreachable;
break :blk Value{.Value = value};
} else if (variant.getAttribute("bitpos")) |bitpos_str| {
break :blk Value{.Bitpos = std.fmt.parseInt(u5, bitpos_str, 10) catch unreachable};
} else if (variant.getAttribute("alias")) |alias| {
break :blk Value{.Alias = alias};
} else if (variant.getAttribute("offset")) |offset_str| {
const offset = std.fmt.parseInt(u32, offset_str, 10) catch unreachable;
const actual_ext_nr = ext_nr orelse blk: {
const ext_nr_str = variant.getAttribute("extnumber").?;
break :blk std.fmt.parseInt(u32, ext_nr_str, 10) catch unreachable;
};
const abs_value = EnumInfo.extensionEnumInfoValue(actual_ext_nr, offset);
const value = if (variant.getAttribute("dir")) |_| -@intCast(i32, abs_value) else @intCast(i32, abs_value);
break :blk Value{.Value = value};
} else {
unreachable;
}
};
self.addVariant(name, value);
}
fn isBackwardsCompatAlias(variant: *xml.Element) bool {
if (variant.getAttribute("comment")) |comment| {
return mem.eql(u8, comment, "Backwards-compatible alias containing a typo") or
mem.eql(u8, comment, "Deprecated name for backwards compatibility");
}
return false;
}
fn extensionEnumInfoValue(ext_nr: u32, offset: u32) u32 {
const extension_value_base = 1000000000;
const extension_block = 1000;
return extension_value_base + (ext_nr - 1) * extension_block + offset;
}
};
pub fn generate(backing_allocator: *Allocator, root: *xml.Element) *Registry {
std.debug.assert(mem.eql(u8, root.tag, "registry"));
var registry = Registry.init(backing_allocator) catch unreachable;
processTypes(registry, root);
processEnums(registry, root);
processCommands(registry, root);
processFeatures(registry, root);
processExtensions(registry, root);
return registry;
}
fn processTypes(registry: *Registry, root: *xml.Element) void {
var types = root.findChildByTag("types").?;
var it = types.findChildrenByTag("type");
while (it.next()) |ty| {
const category = ty.getAttribute("category") orelse continue;
if (mem.eql(u8, category, "bitmask")) {
processBitmaskInfoType(registry, ty);
} else if (mem.eql(u8, category, "handle")) {
processHandleType(registry, ty);
} else if (mem.eql(u8, category, "struct")) {
processStructType(registry, ty);
} else if (mem.eql(u8, category, "funcpointer")) {
processFuncPointerType(registry, ty);
}
}
}
fn processBitmaskInfoType(registry: *Registry, ty: *xml.Element) void {
if (ty.getAttribute("name")) |name| {
const alias = ty.getAttribute("alias").?;
if (registry.bitmasks.put(name, .{.Alias = alias}) catch unreachable) |_| unreachable;
} else {
const name = ty.getCharData("name").?;
const bits: BitmaskInfo = if (ty.getAttribute("requires")) |bits_name| .{.Bits = bits_name} else .None;
if (registry.bitmasks.put(name, bits) catch unreachable) |_| unreachable;
}
}
fn processHandleType(registry: *Registry, ty: *xml.Element) void {
if (ty.getAttribute("alias")) |alias| {
const name = ty.getAttribute("name").?;
if (registry.handles.put(name, .{.Alias = alias}) catch unreachable) |_| unreachable;
} else {
const define_type_str = ty.getCharData("type").?;
const name = ty.getCharData("name").?;
const handle: HandleInfo = if (std.mem.eql(u8, define_type_str, "VK_DEFINE_HANDLE")) .Dispatchable else .NonDispatchable;
if (registry.handles.put(name, handle) catch unreachable) |_| unreachable;
}
}
fn processStructType(registry: *Registry, ty: *xml.Element) void {
const name = ty.getAttribute("name").?;
if (ty.getAttribute("alias")) |alias| {
// Aliases should always be defined after their parent type, so this should be safe
var s = &registry.structs.get(alias).?.value;
s.addAlias(name);
return;
}
const s = StructInfo.fromXml(&registry.arena.allocator, ty);
if (registry.structs.put(name, s) catch unreachable) |_| unreachable;
}
fn processFuncPointerType(registry: *Registry, ty: *xml.Element) void {
const name = ty.getCharData("name").?;
const cmd = CommandInfo.fromFnPtrXml(&registry.arena.allocator, ty);
if (registry.fn_ptrs.put(name, cmd) catch unreachable) |_| unreachable;
}
fn processEnums(registry: *Registry, root: *xml.Element) void {
var it = root.findChildrenByTag("enums");
while (it.next()) |enums| {
const name = enums.getAttribute("name").?;
if (!mem.eql(u8, name, "API Constants")) {
const e = EnumInfo.fromXml(&registry.arena.allocator, enums);
if (registry.enums.put(name, e) catch unreachable) |_| unreachable;
}
}
}
fn processCommands(registry: *Registry, root: *xml.Element) void {
var commands = root.findChildByTag("commands").?;
var command_it = commands.findChildrenByTag("command");
while (command_it.next()) |elem| {
if (elem.getAttribute("alias")) |alias| {
const name = elem.getAttribute("name").?;
var cmd = &registry.commands.get(alias).?.value;
cmd.addAlias(name);
} else {
const name = elem.findChildByTag("proto").?.getCharData("name").?;
const command = CommandInfo.fromXml(&registry.arena.allocator, elem);
if (registry.commands.put(name, command) catch unreachable) |_| unreachable;
}
}
}
fn processExtensions(registry: *Registry, root: *xml.Element) void {
var extensions = root.findChildByTag("extensions").?;
var ext_it = extensions.findChildrenByTag("extension");
while (ext_it.next()) |ext| {
if (ext.getAttribute("supported")) |support| {
if (mem.eql(u8, support, "disabled")) continue;
}
processExtension(registry, ext);
}
}
fn processExtension(registry: *Registry, ext: *xml.Element) void {
const ext_nr_str = ext.getAttribute("number").?;
const ext_nr = std.fmt.parseInt(u32, ext_nr_str, 10) catch unreachable;
var version: ?u32 = null;
var req_it = ext.findChildrenByTag("require");
while (req_it.next()) |req| {
var it = req.findChildrenByTag("enum");
while (it.next()) |variant| {
if (variant.getAttribute("extends")) |enum_name| {
// Some extensions define variants for other extensions,
// these are also defined in those extensions, so just skip them
if (variant.getAttribute("extnumber")) |_| continue;
const kv = registry.enums.get(enum_name).?;
kv.value.processVariantFromXml(variant, ext_nr);
} else if (variant.getAttribute("name")) |name| {
if (mem.endsWith(u8, name, "_SPEC_VERSION")) {
const version_str = variant.getAttribute("value").?;
version = std.fmt.parseInt(u32, version_str, 10) catch unreachable;
}
}
}
}
var ext_info = ExtensionInfo{
.name = ext.getAttribute("name").?,
.number = ext_nr,
.version = version.?
};
registry.extensions.push(ext_info) catch unreachable;
}
fn processFeatures(registry: *Registry, root: *xml.Element) void {
var feature_it = root.findChildrenByTag("feature");
while (feature_it.next()) |feature| {
var req_it = feature.findChildrenByTag("require");
while (req_it.next()) |req| {
var enum_it = req.findChildrenByTag("enum");
while (enum_it.next()) |variant| {
const enum_name = variant.getAttribute("extends") orelse continue;
const kv = registry.enums.get(enum_name).?;
kv.value.processVariantFromXml(variant, null);
}
}
}
}